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Background and question

e singular vectors have been and are still being used as a
method to generate initial perturbations for ensemble
prediction (ECMWF, Météo-France, JMA)

e representing ensemble initial perturbations by distribution in
space of leading singular vectors involves a number of
approximations/assumptions

e replace true analysis error covariance matrix by simple estimate
(initial time metric)

e rank-reduction of the analysis error covariance matrix

e setting of the variance in the space of the singular vectors

e approximation of the non-linear model by a tangent-linear
model

e how do these approximations/assumptions impact the ability
to make reliable predictions of the pdf of forecast errors?
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Outline

Ensemble forecasts and reliability

Singular vectors, linear/non-linear fc error covariance
predictions
e A diagnostic to assess reliability in the context of singular
vectors
All uncertainties represented by initial SVs

e Rank-reduction, amplitude and reliability

e The tangent-linear approximation

The operational configuration of the ECMWF ENS

e Summary

SSCECMWF
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Evolution of overall ENS reliability

Z500 N-Hem: ensemble stdev versus ens. mean rmse
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Linear model and low rank representation

of initial uncertainties
error covariances at

initial time ty

spectrum of A spectrum of MAMT"
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Linear and nonlinear forecast error
covariance estimates

The linear estimate, as assumed in SV approach
MA'M*

The non-linear estimate as used in practice with ensembles (N
members)

N
T
(N =1)7>7 [ Mxi) = M(x)| [ Mxi) = M(x)
k=1
e the two estimates will differ unless nonlinear model M and
TL model M are identical

e focus on the nonlinear estimate (will return to linear estimate

later) S ECMWF
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Is ensemble variance in SV subspaces

matching actual error variances?

verification of forecast valid at t; and initialized at tp using SVs
that grow from ty to tj.

SV subspace

SSCECMWF
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Is ensemble variance in SV subspaces

matching actual error variances?

verification of forecast valid at t; and initialized at tp using SVs
that grow from ty to tj.

SV subspace
Px

e define operator P that projects on the subspace spanned by
the evolved SVs (valid at t1).

e x: error of ensemble mean or one of the perturbations about
ensemble mean

e compute variance of error and ensemble variance S ECMWF

0
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Is ensemble variance in SV subspaces

matching actual error variances?

verification of forecast valid at t; and initialized at tp using SVs
that grow from ty to tj.

(I-P)x

-

SV subspace

Px

e define operator P that projects on the subspace spanned by
the evolved SVs (valid at ).

e x: error of ensemble mean or one of the perturbations about
ensemble mean

e compute variance of error and ensemble variance £ ECMWF

0
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Projection example

48-hour ens. mean error: 200-500 hPa meridional wind

subspace of leading SVs

error ensemble mean

full error

error ensemble mean

:

orthogonal complement

error ensemble mean
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Projection example
48-hour perturbation member 2: 200-500 hPa meridional wind

subspace of leading SVs

perturbation member 2

full perturbation

perturbation member 2

orthogonal complement

perturbation member 2

SSCECMWF
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Variances in subspace S
Ensemble variances and mean squared errors computed with

Ix||* = x" Exx (1)
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Variances in subspace S
Ensemble variances and mean squared errors computed with

Ix||* = x" Exx (1)

Compare ensemble variance in subspace V.5 with mean squared
error of ensemble mean (“error variance”) V!

1 Y 12
Vens[s] = MZHPSLD (Xk *X)H (2)
k=1
Ve [S] = {|IPsLo (x — y)|I*) (3)

® M members xk, ens. mean X and analysis y
® subdomain D and localization operator Lp

® subspace S and orthogonal projection Ps into S
sample mean ( ) S ECMWEF
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Singular vectors

The initial SVs v; and singular values o;are solutions of

MTLLE;LpMv; = 07Eov; (4)

e M propagator from tg to t;
e Ep, E; symm. pos. def. matrix; initial and final metric

o E;! and ME;'MT are the analysis error and forecast error
covariance matrices assumed in SV computation

SSCECMWF
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Singular vectors

The initial SVs v; and singular values o;are solutions of

MTLLE;LpMv; = 07Eov; (4)

e M propagator from tg to t;
e Ep, E; symm. pos. def. matrix; initial and final metric

o E;! and ME;'MT are the analysis error and forecast error
covariance matrices assumed in SV computation

Define subspace basis vectors and projections with evolved,
localized and normalized SVs:

wj = aJ._lLDMv,- which are the leading eigenvectors of  (5)

C: = E;’Lp ME;*M" LEE,
P PR T e CECMWF
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The projection operator
For a singular vector subspace
S(J) = span{w;|j € J}
the orthogonal projection of a vector x into S is given by
Ps(J)X = Z W W;-TElx
JjeJ ~

=aj(x)

SSCECMWF
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The projection operator
For a singular vector subspace

S(J) = span{w;|j € J}
the orthogonal projection of a vector x into S is given by
PS(J)X = Z Wj W;IElx
JjeJ ~
=aj(x)
The squared norm of the projection in S can be expressed as

HPS(J) xH2 = Z Z aj(x)ak(x)wJ-TElwk = Zaf(x)

JET ke JET
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The projection operator
For a singular vector subspace
S(J) = span{w;|j € J}
the orthogonal projection of a vector x into S is given by
PS(J)X = Z Wj W;-TE;[X
g
=aj(x)
The squared norm of the projection in S can be expressed as
‘Ps J)XH Z Z aj(x)ak(x -TElwk = Zaf(x)
JET ke JET
Variances are additive for mutually orthogonal subspaces

v[51+-~-+5K]=£:v[g]

V/[full space] = V[S] + V[orth. compl. of Slen ECMWE
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Spaces

space notation
J =11,2,...,10} SV1-10
J ={1,2,...,50} SV1-50

J =496,97,...,100} SV96-100
J ={101,102,...,N} C(SV1-100)
orthogonal complement of SV1-100
N is the dimension of the SV state space.

For an isotropic distribution in the space of the initial SVs, the
ensemble variance in the direction of j-th SV scales as

Vins(SV Jj) sz

if perturbations are evolved with the TL-model.
SECMWF

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1-5 June 2015 13



Experiment setup

singular vectors

TL159 singular vectors

48-hour opt. time; Eg, E; total energy
moist processes represented in TL
initial uncertainties represented by

e leading 25 SVs in each hemisphere (H25)

e leading 50 SVs in each hemisphere (H50)

e leading 100 SVs in each hemisphere (H100)

e leading 100 SVs in each hem. used for the diagnostics

Assumed reduced rank analysis error covariance matrices

spectrum of A' (in one hemisphere)

8 A
£ H25 H50 H100
g s .
25 50 100
eigenvalue number £ ECMWF
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Experiment setup

ensemble forecasts

e T,639 ensembles (Ax = 32km)

e 50 members

e 20 start dates

e only initial uncertainties represented with SVs

e singular vectors sample isotropic Gaussian distribution in
space spanned by initial singular vectors

e reliable variances can be obtained in a particular SV subspace
by adjusting variance of initial perturbations

e for 3 experiments H25, H50, H100 variance of init. pertns. is
set so that error variance matches ensemble variance in space
SV1-25.

SSCECMWF
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Variance “spectra”’
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dark grey: variance of nonlinear ens. perturbations projected into SV spaces
light grey: RMS of ensemble mean error projected into SV spaces
bars: 95% confidence interval of difference of ens. and err. variances
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Variance “spectra”’
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Different ranks of the assumed analysis
error covariance

H25 _ H50 N H100
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Orthogonal complement subspaces

H25 H50 H100
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NH (20°N-90°N) spread and RMSE

500 hPa geopotential

4004 e H25

300+
(%))
=
= 200-

100+

0 ;
0 1 2 y ‘ °

forecast step (d)

Lines with symbols: RMSE of ensemble mean ~
Lines without symbols: Ensemble standard deviation SSECMWF
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Scaling of analysis error standard deviation

e In past, the amplitude of the singular vector initial
perturbations used to be adjusted so that the domain
averaged ensemble variance matches the mean squared error

(e.g. for Z500 in the extratropics).

e What are the implications? — additional experiments H25+
and H50-+ with inflated initial perturbation amplitude

e The standard deviation of the initial singular vector
perturbations is proportional to a scaling parameter v

Exp. Nsv INH YSH
H25 25 0.0048 0.0051
H25+ 25 0.0095 0.0092
H50 50 0.0048 0.0051
H504 50 0.0091 0.0089
H100 100 0.0048 0.0051

M Leutbecher and STK Lang SVs and reliability

SSCECMWF

Roanoke, WV, 1-5 June 2015
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Increased analysis error variances

500 hPa geopotential
Northern extra-tropics (20°N-90°N)
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Lines with symbols: RMSE of ensemble mean S ECMWF

Lines without symbols: Ensemble standard deviation
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Increased analysis error variances

500 hPa geopotential
Southern extra-tropics (20°S-90°S)
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M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1-5 June 2015 21



Forecast error variances

in experiments with increased analysis error variances
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Local spread-reliability

reliable in SV1-25 overdispersive in SV1-25
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with similar spread
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® 48-hour lead time 'cECMWF
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Two different SV configurations

SV159: T,;159 resolution, moist physics included

SV42: T42 resolution, dry physics (vertical mixing only)
Ensemble experiment H50 uses leading 50 SV159 SVs
Ensemble experiment L50 uses leading 50 SV42 SVs

SV42 NH
= SV42SH ||
SV159 NH
SV159 SH

Singular Value

-
~
-
.......
.~y
L
~
~

——

I 25 50 75 100 Py
Singular Vector Index WECMWF
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Linearisation errors

e RMS of linearisation error in subspace of SV42 SVs (1st row)
and in subspace of SV159 SVs (2nd row)

e evaluated for finite amplitude perturbations of experiments
L50 (1st column) and H50 (2nd column)

e quantified with E; norm || . ||
e normalized by RMS of linearly evolved initial perturbations

Ensemble

subspace L50 H50
SV42 048 234
SV159 0.40 0.44

SSCECMWF
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Linear (left/blue) versus nonlinear
(middle) forecast error variance prediction
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Linear (left/blue) versus nonlinear
(middle) forecast error variance prediction
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Improved reliability through use of a more
accurate TL approximation?

Compare variances in subspaces of SV159 for experiments with
initial perturbations based on

* SV42 (L50)
e SV159 (H50 and H100)

SSCECMWF
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Variances in subspaces of SV159

H50 (SV159 init. pertns.) L50 (SV42 init. pertns.)
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Variances in subspaces of SV159

H100 (SV159 init. pertns.) L50 (SV42 init. pertns.)
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The operational ECMWEF ensemble

The full representation of uncertainties consists of
e SVs (T42 dry TL-model)
e EDA (TL399)
e representations of model uncertainties (SPPT, SKEB)

SSCECMWF
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The operational ECMWEF ensemble

The full representation of uncertainties consists of
e SVs (T42 dry TL-model)
e EDA (TL399)
e representations of model uncertainties (SPPT, SKEB)

What happens to reliability of variances in SV subspaces if one
suppresses SV initial perturbations in ensemble (FULL — NoSVs)?

Is there significant variance generated in the subspace of the
leading SVs by the EDA initial perturbations and the
representations of model uncertainties?

SSCECMWF
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Impact of omitting singular vectors

NoSVs FULL
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Potential merit of modifying the SV
configuration in the operational ENS

e T42 dry TL model — TL95 moist TL model
e 50 — 150 leading SVs

initial evaluation

e A case study: US East Coast snow storm 27 January 2015

e Variances in SV subspaces (consistently evolved with same TL
model: TL255 moist)

SSCECMWF
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e worst affected areas were in
a band from Long Island
towards Boston and further

north

e storm was expected to also
hit New Jersey and New
York City and strong actions
were taken before the event

e NYC only got a little snow

e ECMWF model gave strong
indication for severe snow

over NYC

Acknowledgments: Linus Magnusson

M Leutbecher and STK Lang

US East Coast blizzard
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Vertically integrated total energy of
evolved SVs

2015012600+48h

Normalised vertically integrated total
energy: vte=vte/vte_max (global max)

150 moist TL95 evolved SVs

o T

50 dry T42 evolved SVs

SSCECMWF
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Change in ensemble spread (Z500)

2015012600+48h z500hPa spread differences : 150 TL95 SVs — 50 T42 SVs

2015012500

s ECMWF
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Probability of precipitation

2015012600 + 48h - Probability 24h acc precipitation > 30 mm

ENS with 150 moist TL95 SVs

oy 28 dniry 201500 UTC st 1043 T Wedhasdy 8 sy 201 00 LTC s Tetalpracpiton

ENS with 50 dry T42 SVs

SSCECMWF
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Variances in SV subspaces
subspaces defined with

<— TL95 moist singular vectors — < T42 dry singular vectors —

5 Total Energy, svevos gaxf 255 Total Eneray, svevos gaxf 255 o

tal Energy, svevos gaxu 255 tal Energy, svevos gaxu 255
4 4 4 4
-3 -3 - 3|
k] z k] 2
o o o ®
22 22 22 2 2|
5 5 5 5
3 3 5 5
g g g g
1 1 1 1 -
LI o o L
R N N ) S N N ey N Y S
S PR W SO 0 S PP (P O 0 L e st

initial T42 dry SVs TL95 moist SVs T42 dry SVs TL95 moist SVs
pertns.

e for diagnostic, all subspaces evolved with moist TL255 TL model

® 35 cases in boreal winter
® dark grey: ensemble variance, light grey: error variance £ ECMWF
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Summary: rank reduction, amplitude

e An isotropic Gaussian distribution in the space of the leading
singular vectors can

o reliable represent forecast errors in the space spanned by the
SVs used for the representation of initial uncertainties

e not reliable represent forecast errors in the orthogonal
complement of this space

e Inflating the singular vector perturbations in order reach
reliable variances in full space leads to
e pronounced overdispersion in space of leading SVs, i.e. lack of
reliability
e still not enough spread in the orthogonal complement
e Having used an initial time metric based on a simple
approximation of the analysis error covariance matrix (total
energy) did not hamper the reliability

SSCECMWF
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Summary TL approximation

e Tangent-linear prediction of forecast error variances predicts
systematically larger variances in subspaces of leading SVs
than non-linear model

o Reliable variance prediction with nonlinear model =
overdispersion with TL prediction

e TL approximation errors lead to significant amount of variance
leaking into orthogonal complement of leading SV subspace
(may be beneficial for ensemble prediction)

e Initial perturbations based on SVs computed with less
accurate TL model can generate about the right amount of
overall variance in subspaces of SVs computed with a more
accurate TL model (The two sets are not orthogonal.)

e However, SV159 SVs show more consistent reliability across
spectrum of SVs while SV42 SVs exhibit overdispersion for

leading 5-10 SVs while reliable for slower growing SVs
SECMWF
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Summary operational EPS configuration

e EDA initial perturbations and the model error representation
generate a significant amount of ensemble spread in the space
spanned by the leading 50 T42 extra-tropical SVs

e SVs are still justified to boost spread to the right level in
subspace of leading SVs

e The diagnostic based on SVs can be used to decide when SV
initial perturbations are inadequate
e Improving the operational ENS configuration may be possible
through
e further reduction in amplitude of SV perturbations
e increasing the number of SVs used to define the initial

perturbations
e use of a more accurate TL approximation

see also Leutbecher and Lang (2014, QJ) S ECMWF
-r
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Discussion

As usual, more open questions than answers.

How would conclusions be affected by

e bias: RMS error versus error variance

analysis uncertainties

domain size and number of SVs required to explain certain
fraction of fc error variance

initial time metric (proxy for A~1)

o flow-dependent variations
e fraction of fc error variance

optimisation time
e steepness of singular value spectrum
e accuracy of TL approximation

link to ensemble covariance EOF-based diagnostics

SSCECMWF
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Local spread reliability again
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Using diagnostics for subspaces computed
with different SV configurations

SV159 spaces SV42 spaces
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Experiment L50: Analysis error representation with SV42 SVs for bot&S ECMWF
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